Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Xia Sun,* Ying Zhao, Cui Zhang and Yan-Hui Zhang

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: fxsun001@163.com

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.109$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(2-Acetoxyethyl) 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate

The title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$, is an analog of nefidipine. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable for the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu \& Knaus, 1999; Goldmann \& Stoltefuss, 1991). The title compound, (I), is a nefidipine analog.

Received 14 September 2006 Accepted 25 September 2006

(I)

Fig. 1 shows the structure of (I). The dihydropyridine ring has a flattened boat conformation. This compares well with the structures of two 3-benzotriazol-1-yl 5-alkyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylates (Liu et al., 2006; Jiang \& Sun, 2006). Atoms C3 and N1 are displaced from the mean plane formed by the other atoms in the ring by 0.296 (1) and 0.130 (1) \AA, respectively. The dihedral angle between the benzene ring and the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane is 94.54 (1) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules along the c axis (Table 1).

Experimental

3-(2-Hydroxyethyl) 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate ($376 \mathrm{mg}, 1 \mathrm{mmol}$) and NaHSO_{4} ($22 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in ethyl acetate (15 ml). Acetic anhydride (5 ml) was added dropwise to the solution at room temperature. The reaction mixture was stirred at 300 K for a further 6 h . Water (20 ml) was added to the solution and the mixture was neutralized by $\mathrm{NaOH}\left(1 \mathrm{~mol} \mathrm{l}^{-1}\right)$. The organic layer contained the

organic papers

desired compound. The product was obtained by removing the solvent, ethyl acetate, by vacuum evaporation at 293 K , and purifying by chromatography on a silica-gel column (eluting with ethyl acetate and petroleum, 1:5) at room temperature. Suitable crystals were obtained by slow evaporation of an ethyl acetate-petroleum (1:6) solution.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$
$M_{r}=418.40$
Triclinic, $P \overline{1}$
$a=9.0389$ (12) \AA
$b=10.6990$ (14) A
$c=11.0049$ (16) \AA
$\alpha=93.452$ (6) ${ }^{\circ}$
$\beta=90.871(5)^{\circ}$
$\gamma=109.153(6)^{\circ}$

Data collection

Rigaku Saturn diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)

$$
T_{\min }=0.966, T_{\max }=0.975
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.109$
$S=1.06$
4730 reflections
281 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& V=1002.8(2) \AA^{3} \\
& Z=2 \\
& D_{x}=1.386 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation }^{\mu=0.11 \mathrm{~mm}^{-1}} \\
& T=113(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.32 \times 0.30 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

12582 measured reflections 4730 independent reflections 3265 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.8^{\circ}$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0614 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 Extinction coefficient: 0.032 (5)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 5$	$1.3837(17)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.3881(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$			
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$123.66(11)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$110.44(10)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.893(16)$	$2.038(17)$	$2.9241(15)$	$171.7(15)$

Symmetry code: (i) $x, y, z+1$.

H atoms on C atoms were placed in calculated positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). Atom H 1 on N 1 was identified in a difference Fourier map and refined isotropically.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

The authors gratefully acknowledge support from the Hebei University of Science and Technology.

References

Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 15591578.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Jiang, L.-Q. \& Sun, F.-X. (2006). Acta Cryst. E62, o1129-o1130.
Liu, B.-S., Sun, F.-X., Zhou, L.-N., Sun, H. \& Wang, J.-K. (2006). Acta Cryst. E62, o72-o73.
Rigaku (2005). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yiu, S. H. \& Knaus, E. E. (1999). Drug Dev. Res. 48, 26-37.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

